Q	Marking Instructions	AO	Marks	Typical Solution
6(a)	Uses area of ADB = area of CDB or area of ADB = ½ area of ABC	AO3.1a	M1	C
	Possibly by use of "½ab sinC" twice			Area of ADB = Area of CDB
	Deduces that AC = 2 x AD = 2 x AB or equivalent	AO1.1b	A1	CD = AD = c AC = 2c
	Uses trigonometry involving sin and tan based on triangle with AC = 2 x AB	AO1.1a	M1	$\cos A = \frac{c}{2c} = \frac{1}{2} \text{ so } A = 60^{\circ}$ $\tan A = \sqrt{3}$
	Obtains correct conclusion (AG) Sets out a well-constructed mathematical argument. Use of 60° or equivalent must be justified	AO2.1	R1	$\sin A = \frac{\sqrt{3}}{2}$ $2\sin A = \sqrt{3} = \tan A$
(b)(i)	Uses tan A = sin A cosA and multiplies Or Uses sketch of two graphs to show two intersections	AO1.1a	M1	sin A = 2 sin A cos A sin A = 2 sin A cos A
	Solves the equation to give A = 0° and 60° Or interprets intersections of graphs of the correct shape between 0° and 90° to be the solutions Special case 0° and 60° stated but not justified award B1. Stated and verified award B2	AO1.1b	A1	sin A(1 – 2cos A) = 0 sin A = 0 or cos A = ½ A = 0° and A = 60°
(b)(ii)	ordered de la company	AO3.2a	B1	We need A = 60°
	Total		7	

Q	Alternative marking Instructions	AO	Marks	Typical Solution
6(a)	Obtains area formula for ABD using sin A	AO3.1a	M1	$Area of ADB = \frac{1}{2}c^{2} sin A$
	Obtains expression for BC using tan A	AO1.1a	M1	BC = tan A c BC = c tan A
	Obtains correct expression for area of ABC	AO1.1b	A1	Area of ABC = ½ c² tan A
	Simplifies to correct conclusion (AG) Sets out a well-constructed mathematical argument.	AO2.1	R1	½ c² tan A = 2 x ½c² sin A tan A = 2 sin A
(b)(i)	Uses tan A = sin A cosA and multiplies Or Uses sketch of two graphs to show two intersections	AO1.1a	M1	sin A = 2 sin A cos A sin A = 2 sin A cos A
	Solves the equation to give A = 0° and 60° Or interprets intersections of graphs of the correct shape between 0° and 90° to be the solutions Special case 0° and 60° stated but not justified award B1. Stated and verified award B2	AO1.1b	A1	sin A(1 – 2cos A) = 0 sin A = 0 or cos A = ½ A = 0° and A = 60°
(b)(ii)	Selects A = 60°. (Can be earned with no other working shown)	AO3.2a	B1	We need A = 60°
	Total		7	